NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (2023)

Get Free NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 PDF in Hindi and English Medium. Sets Class 12 Maths NCERT Solutions are extremely helpful while doing your homework. Inverse Trigonometric Functions Exercise 2.2 Class 12 Maths NCERT Solutions were prepared by Experienced LearnCBSE.in Teachers. Detailed answers of all the questions in Chapter 2 Class 12 Inverse Trigonometric Functions Ex 2.2 provided in NCERT Textbook.

Free download NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 PDF in Hindi Medium as well as in English Medium for CBSE, Uttarakhand, Bihar, MP Board, Gujarat Board, BIE, Intermediate and UP Board students, who are using NCERT Books based on updated CBSE Syllabus for the session 2019-20.

Topics and Sub Topics in Class 11 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2:

Section NameTopic Name
2Inverse Trigonometric Functions
2.1Introduction
2.2Basic Concepts
2.3Properties of Inverse Trigonometric Functions

NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2

Ex 2.2 Class 12 Maths Question 1.

\(3\sin ^{ -1 }{ x=\sin ^{ -1 }{ (3x-4x^{ 3 });x\in \left[ -\frac { 1 }{ 2 } ,\frac { 1 }{ 2 } \right] } } \)
Solution:
Let sin-1 x = θ
sin θ = x sin 3θ = 3 sin θ – 4 sin³ θ
sin 3θ = 3x – 4x³
3θ = sin-1(3x – 4x³)
or \(3\sin ^{ -1 }{ x=\sin ^{ -1 }{ (3x-4x^{ 3 });x\in \left[ -\frac { 1 }{ 2 } ,\frac { 1 }{ 2 } \right] } } \)

Ex 2.2 Class 12 MathsQuestion 2.
\(3\cos ^{ -1 }{ x } =\cos ^{ -1 }{ \left( { 4x }^{ 3 }-3x \right) ,x\in \left[ \frac { 1 }{ 2 } ,1 \right] } \)
Solution:
Let cos-1 x = θ
x = cos θ
R.H.S= cos-1(4x³ – 3cosx)
= cos-1 (4 cos³θ – 3 cosθ)
= cos-1 (cos 3θ) [∴ cos 3θ = 4 cos³ θ – 3 cos θ]
= 3θ
= 3 cos-1 x
= L.H.S.

Ex 2.2 Class 12 MathsQuestion 3.
\(\tan ^{ -1 }{ \frac { 2 }{ 11 } } +\tan ^{ -1 }{ \frac { 7 }{ 24 } } =\tan ^{ -1 }{ \frac { 1 }{ 2 } } \)
Solution:
L.H.S = \(\tan ^{ -1 }{ \frac { 2 }{ 11 } } +\tan ^{ -1 }{ \frac { 7 }{ 24 } } \)
= \(\tan ^{ -1 }{ \left[ \frac { \frac { 2 }{ 11 } +\frac { 7 }{ 24 } }{ 1-\frac { 2 }{ 11 } \times \frac { 7 }{ 24 } } \right] } \)
= \(\tan ^{ -1 }{ \left[ \frac { 1 }{ 2 } \right] } \)
= R.H.S

Ex 2.2 Class 12 MathsQuestion 4.
\(2\tan ^{ -1 }{ \frac { 1 }{ 2 } } +\tan ^{ -1 }{ \frac { 1 }{ 7 } } =\tan ^{ -1 }{ \frac { 31 }{ 17 } } \)
Solution:
L.H.S =
\(2\tan ^{ -1 }{ \frac { 1 }{ 2 } } +\tan ^{ -1 }{ \frac { 1 }{ 7 } } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (1)

Ex 2.2 Class 12 MathsQuestion 5.
Write the function in the simplest form
\(\tan ^{ -1 }{ \left( \frac { \sqrt { 1+{ x }^{ 2 }-1 } }{ x } \right) } ,x\neq 0\)
Solution:
Putting x = θ
∴ θ = tan-1 x
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (2)

Ex 2.2 Class 12 MathsQuestion 6.
\(\tan ^{ -1 }{ \left( \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } \right) ,\left| x \right| } >1\)
Solution:
Given expression
\(\tan ^{ -1 }{ \left( \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } \right) ,\left| x \right| } >1\)
Let x = secθ
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (3)

Ex 2.2 Class 12 MathsQuestion 7.
\(\tan ^{ -1 }{ \left( \sqrt { \frac { 1-cosx }{ 1+cosx } } \right) } ,0<x<\pi \)
Solution:
\(\tan ^{ -1 }{ \left( \sqrt { \frac { 1-cosx }{ 1+cosx } } \right) } ,0<x<\pi \)
= \(\tan ^{ -1 }{ \left[ \sqrt { \frac { { 2sin }^{ 2 }\frac { x }{ 2 } }{ { 2cos }^{ 2 }\frac { x }{ 2 } } } \right] } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (4)

Ex 2.2 Class 12 MathsQuestion 8.
\(\tan ^{ -1 }{ \left( \frac { cosx-sinx }{ cosx+sinx } \right) ,0<x<\pi } \)
Solution:
\(\tan ^{ -1 }{ \left( \frac { cosx-sinx }{ cosx+sinx } \right) ,0<x<\pi } \)
Dividing numerator and denominator by cos x
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (5)

Ex 2.2 Class 12 MathsQuestion 9.
\(\tan ^{ -1 }{ \left( \frac { x }{ \sqrt { { a }^{ 2 }-{ x }^{ 2 } } } \right) ,\left| x \right| } <a\)
Solution:
Let x = a sinθ
=> \(\\ \frac { x }{ a } \) = sinθ
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (6)

Ex 2.2 Class 12 MathsQuestion 10.
\(\tan ^{ -1 }{ \left[ \frac { { 3a }^{ 2 }-{ x }^{ 3 } }{ { a }^{ 3 }-{ 3ax }^{ 2 } } \right] ,a>0;\frac { -a }{ \sqrt { 3 } } <x,<\frac { a }{ \sqrt { 3 } } } \)
Solution:
Put x = a tanθ,
we get
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (7)

Ex 2.2 Class 12 MathsQuestion 11.
Find the value of the following
\(\tan ^{ -1 }{ \left[ 2cos\left( 2\sin ^{ -1 }{ \frac { 1 }{ 2 } } \right) \right] } \)
Solution:
\(\tan ^{ -1 }{ \left[ 2cos\left( 2\sin ^{ -1 }{ \frac { 1 }{ 2 } } \right) \right] } \)
= \(\tan ^{ -1 }{ \left[ 2cos2.\frac { \pi }{ 6 } \right] } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (8)

Ex 2.2 Class 12 MathsQuestion 12.
cot[tan-1 a + cot-1 a]
Solution:
Given
cot[tan-1 a + cot-1 a]
= \(cot\left( \tan ^{ -1 }{ a } +\tan ^{ -1 }{ \frac { 1 }{ a } } \right) \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (9)

Ex 2.2 Class 12 MathsQuestion 13.
\(tan\frac { 1 }{ 2 } \left[ \sin ^{ -1 }{ \frac { 2x }{ 1+{ x }^{ 2 } } +\cos ^{ -1 }{ \frac { 1-{ y }^{ 2 } }{ 1+{ y }^{ 2 } } } } \right] \left| x \right| <1,y>0\quad and\quad xy<1\)
Solution:
Putting x = tanθ
=> tan-1 x = θ
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (10)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (11)

Ex 2.2 Class 12 MathsQuestion 14.
If \(sin\left( \sin ^{ -1 }{ \frac { 1 }{ 5 } } +\cos ^{ -1 }{ x } \right) =1\) then find the value of x
Solution:
\(sin\left( \sin ^{ -1 }{ \frac { 1 }{ 5 } } +\cos ^{ -1 }{ x } \right) =sin\frac { \pi }{ 2 } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (12)

Ex 2.2 Class 12 MathsQuestion 15.
If \(\tan ^{ -1 }{ \frac { x-1 }{ x-2 } } +\tan ^{ -1 }{ \frac { x+1 }{ x+2 } } =\frac { \pi }{ 4 } \) then find the value of x
Solution:
L.H.S
\(\tan ^{ -1 }{ \frac { x-1 }{ x-2 } } +\tan ^{ -1 }{ \frac { x+1 }{ x+2 } } =\frac { \pi }{ 4 } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (13)

Ex 2.2 Class 12 MathsQuestion 16.
\(\sin ^{ -1 }{ \left( sin\frac { 2\pi }{ 3 } \right) } \)
Solution:
\(\sin ^{ -1 }{ \left( sin\frac { 2\pi }{ 3 } \right) } \)
= \(\sin ^{ -1 }{ \left( sin\left( \pi -\frac { \pi }{ 3 } \right) \right) } \)
= \(\sin ^{ -1 }{ \left( sin\left( \frac { \pi }{ 3 } \right) \right) } =\frac { \pi }{ 3 } \)

Ex 2.2 Class 12 MathsQuestion 17.
\(\tan ^{ -1 }{ \left( tan\frac { 3\pi }{ 4 } \right) } \)
Solution:
\(\tan ^{ -1 }{ \left( tan\frac { 3\pi }{ 4 } \right) } \)
= \(\tan ^{ -1 }{ \left( sin\frac { 3\pi }{ 4 } \right) } \)
= \(\tan ^{ -1 }{ tan\left( \pi -\frac { \pi }{ 4 } \right) } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (14)

Ex 2.2 Class 12 MathsQuestion 18.
\(tan\left( \sin ^{ -1 }{ \frac { 3 }{ 5 } +\cot ^{ -1 }{ \frac { 3 }{ 2 } } } \right) \)
Solution:
\(tan\left( \sin ^{ -1 }{ \frac { 3 }{ 5 } +\cot ^{ -1 }{ \frac { 3 }{ 2 } } } \right) \)
Let \(\sin ^{ -1 }{ \frac { 3 }{ 5 } = } \theta \)
sinθ = \(\\ \frac { 3 }{ 5 } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (15)

Ex 2.2 Class 12 MathsQuestion 19.
\(\cos ^{ -1 }{ \left( cos\frac { 7\pi }{ 6 } \right) } \) is equal to
(a) \(\frac { 7\pi }{ 6 } \)
(b) \(\frac { 5\pi }{ 6 } \)
(c) \(\frac { \pi }{ 5 } \)
(d) \(\frac { \pi }{ 6 } \)
Solution:
\(\cos ^{ -1 }{ \left( cos\frac { 7\pi }{ 6 } \right) } \)
= \(\cos ^{ -1 }{ cos\left( \pi +\frac { \pi }{ 6 } \right) } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (16)

Ex 2.2 Class 12 MathsQuestion 20.
\(sin\left[ \frac { \pi }{ 3 } -\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } \right] \) is equal to
(a) \(\\ \frac { 1 }{ 2 } \)
(b) \(\\ \frac { 1 }{ 3 } \)
(c) \(\\ \frac { 1 }{ 4 } \)
(d) 1
Solution:
\(sin\left[ \frac { \pi }{ 3 } -\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } \right] \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (17)

Ex 2.2 Class 12 MathsQuestion 21.
\(\tan ^{ -1 }{ \sqrt { 3 } -\cot ^{ -1 }{ \left( -\sqrt { 3 } \right) } } \) is equal to
(a) π
(b) \(-\frac { \pi }{ 2 } \)
(c) 0
(d) 2√3
Solution:
\(\tan ^{ -1 }{ \sqrt { 3 } -\cot ^{ -1 }{ \left( -\sqrt { 3 } \right) } } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (18)

NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Hindi Medium Ex 2.2

NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (19)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (20)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (21)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (22)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (23)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (24)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (25)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (26)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (27)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (28)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 (29)

Class 12 Maths NCERT Solutions

  • Chapter 1 Relations and Functions
  • Chapter 2 Inverse Trigonometric Functions
  • Chapter 3 Matrices
  • Chapter 4 Determinants
  • Chapter 5 Continuity and Differentiability
  • Chapter 6 Application of Derivatives
  • Chapter 7 Integrals Ex 7.1
  • Chapter 8 Application of Integrals
  • Chapter 9 Differential Equations
  • Chapter 10 Vector Algebra
  • Chapter 11 Three Dimensional Geometry
  • Chapter 12 Linear Programming
  • Chapter 13 Probability Ex 13.1
Top Articles
Latest Posts
Article information

Author: Francesca Jacobs Ret

Last Updated: 05/03/2023

Views: 6716

Rating: 4.8 / 5 (48 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.