Get Free NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 PDF in Hindi and English Medium. Sets Class 12 Maths NCERT Solutions are extremely helpful while doing your homework. Inverse Trigonometric Functions Exercise 2.2 Class 12 Maths NCERT Solutions were prepared by Experienced LearnCBSE.in Teachers. Detailed answers of all the questions in Chapter 2 Class 12 Inverse Trigonometric Functions Ex 2.2 provided in NCERT Textbook.
Free download NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 PDF in Hindi Medium as well as in English Medium for CBSE, Uttarakhand, Bihar, MP Board, Gujarat Board, BIE, Intermediate and UP Board students, who are using NCERT Books based on updated CBSE Syllabus for the session 2019-20.
Topics and Sub Topics in Class 11 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2:
Section Name | Topic Name |
2 | Inverse Trigonometric Functions |
2.1 | Introduction |
2.2 | Basic Concepts |
2.3 | Properties of Inverse Trigonometric Functions |
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2
Ex 2.2 Class 12 Maths Question 1.
\(3\sin ^{ -1 }{ x=\sin ^{ -1 }{ (3x-4x^{ 3 });x\in \left[ -\frac { 1 }{ 2 } ,\frac { 1 }{ 2 } \right] } } \)
Solution:
Let sin-1 x = θ
sin θ = x sin 3θ = 3 sin θ – 4 sin³ θ
sin 3θ = 3x – 4x³
3θ = sin-1(3x – 4x³)
or \(3\sin ^{ -1 }{ x=\sin ^{ -1 }{ (3x-4x^{ 3 });x\in \left[ -\frac { 1 }{ 2 } ,\frac { 1 }{ 2 } \right] } } \)
Ex 2.2 Class 12 MathsQuestion 2.
\(3\cos ^{ -1 }{ x } =\cos ^{ -1 }{ \left( { 4x }^{ 3 }-3x \right) ,x\in \left[ \frac { 1 }{ 2 } ,1 \right] } \)
Solution:
Let cos-1 x = θ
x = cos θ
R.H.S= cos-1(4x³ – 3cosx)
= cos-1 (4 cos³θ – 3 cosθ)
= cos-1 (cos 3θ) [∴ cos 3θ = 4 cos³ θ – 3 cos θ]
= 3θ
= 3 cos-1 x
= L.H.S.
Ex 2.2 Class 12 MathsQuestion 3.
\(\tan ^{ -1 }{ \frac { 2 }{ 11 } } +\tan ^{ -1 }{ \frac { 7 }{ 24 } } =\tan ^{ -1 }{ \frac { 1 }{ 2 } } \)
Solution:
L.H.S = \(\tan ^{ -1 }{ \frac { 2 }{ 11 } } +\tan ^{ -1 }{ \frac { 7 }{ 24 } } \)
= \(\tan ^{ -1 }{ \left[ \frac { \frac { 2 }{ 11 } +\frac { 7 }{ 24 } }{ 1-\frac { 2 }{ 11 } \times \frac { 7 }{ 24 } } \right] } \)
= \(\tan ^{ -1 }{ \left[ \frac { 1 }{ 2 } \right] } \)
= R.H.S
Ex 2.2 Class 12 MathsQuestion 4.
\(2\tan ^{ -1 }{ \frac { 1 }{ 2 } } +\tan ^{ -1 }{ \frac { 1 }{ 7 } } =\tan ^{ -1 }{ \frac { 31 }{ 17 } } \)
Solution:
L.H.S =
\(2\tan ^{ -1 }{ \frac { 1 }{ 2 } } +\tan ^{ -1 }{ \frac { 1 }{ 7 } } \)
Ex 2.2 Class 12 MathsQuestion 5.
Write the function in the simplest form
\(\tan ^{ -1 }{ \left( \frac { \sqrt { 1+{ x }^{ 2 }-1 } }{ x } \right) } ,x\neq 0\)
Solution:
Putting x = θ
∴ θ = tan-1 x
Ex 2.2 Class 12 MathsQuestion 6.
\(\tan ^{ -1 }{ \left( \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } \right) ,\left| x \right| } >1\)
Solution:
Given expression
\(\tan ^{ -1 }{ \left( \frac { 1 }{ \sqrt { { x }^{ 2 }-1 } } \right) ,\left| x \right| } >1\)
Let x = secθ
Ex 2.2 Class 12 MathsQuestion 7.
\(\tan ^{ -1 }{ \left( \sqrt { \frac { 1-cosx }{ 1+cosx } } \right) } ,0<x<\pi \)
Solution:
\(\tan ^{ -1 }{ \left( \sqrt { \frac { 1-cosx }{ 1+cosx } } \right) } ,0<x<\pi \)
= \(\tan ^{ -1 }{ \left[ \sqrt { \frac { { 2sin }^{ 2 }\frac { x }{ 2 } }{ { 2cos }^{ 2 }\frac { x }{ 2 } } } \right] } \)
Ex 2.2 Class 12 MathsQuestion 8.
\(\tan ^{ -1 }{ \left( \frac { cosx-sinx }{ cosx+sinx } \right) ,0<x<\pi } \)
Solution:
\(\tan ^{ -1 }{ \left( \frac { cosx-sinx }{ cosx+sinx } \right) ,0<x<\pi } \)
Dividing numerator and denominator by cos x
Ex 2.2 Class 12 MathsQuestion 9.
\(\tan ^{ -1 }{ \left( \frac { x }{ \sqrt { { a }^{ 2 }-{ x }^{ 2 } } } \right) ,\left| x \right| } <a\)
Solution:
Let x = a sinθ
=> \(\\ \frac { x }{ a } \) = sinθ
Ex 2.2 Class 12 MathsQuestion 10.
\(\tan ^{ -1 }{ \left[ \frac { { 3a }^{ 2 }-{ x }^{ 3 } }{ { a }^{ 3 }-{ 3ax }^{ 2 } } \right] ,a>0;\frac { -a }{ \sqrt { 3 } } <x,<\frac { a }{ \sqrt { 3 } } } \)
Solution:
Put x = a tanθ,
we get
Ex 2.2 Class 12 MathsQuestion 11.
Find the value of the following
\(\tan ^{ -1 }{ \left[ 2cos\left( 2\sin ^{ -1 }{ \frac { 1 }{ 2 } } \right) \right] } \)
Solution:
\(\tan ^{ -1 }{ \left[ 2cos\left( 2\sin ^{ -1 }{ \frac { 1 }{ 2 } } \right) \right] } \)
= \(\tan ^{ -1 }{ \left[ 2cos2.\frac { \pi }{ 6 } \right] } \)
Ex 2.2 Class 12 MathsQuestion 12.
cot[tan-1 a + cot-1 a]
Solution:
Given
cot[tan-1 a + cot-1 a]
= \(cot\left( \tan ^{ -1 }{ a } +\tan ^{ -1 }{ \frac { 1 }{ a } } \right) \)
Ex 2.2 Class 12 MathsQuestion 13.
\(tan\frac { 1 }{ 2 } \left[ \sin ^{ -1 }{ \frac { 2x }{ 1+{ x }^{ 2 } } +\cos ^{ -1 }{ \frac { 1-{ y }^{ 2 } }{ 1+{ y }^{ 2 } } } } \right] \left| x \right| <1,y>0\quad and\quad xy<1\)
Solution:
Putting x = tanθ
=> tan-1 x = θ
Ex 2.2 Class 12 MathsQuestion 14.
If \(sin\left( \sin ^{ -1 }{ \frac { 1 }{ 5 } } +\cos ^{ -1 }{ x } \right) =1\) then find the value of x
Solution:
\(sin\left( \sin ^{ -1 }{ \frac { 1 }{ 5 } } +\cos ^{ -1 }{ x } \right) =sin\frac { \pi }{ 2 } \)
Ex 2.2 Class 12 MathsQuestion 15.
If \(\tan ^{ -1 }{ \frac { x-1 }{ x-2 } } +\tan ^{ -1 }{ \frac { x+1 }{ x+2 } } =\frac { \pi }{ 4 } \) then find the value of x
Solution:
L.H.S
\(\tan ^{ -1 }{ \frac { x-1 }{ x-2 } } +\tan ^{ -1 }{ \frac { x+1 }{ x+2 } } =\frac { \pi }{ 4 } \)
Ex 2.2 Class 12 MathsQuestion 16.
\(\sin ^{ -1 }{ \left( sin\frac { 2\pi }{ 3 } \right) } \)
Solution:
\(\sin ^{ -1 }{ \left( sin\frac { 2\pi }{ 3 } \right) } \)
= \(\sin ^{ -1 }{ \left( sin\left( \pi -\frac { \pi }{ 3 } \right) \right) } \)
= \(\sin ^{ -1 }{ \left( sin\left( \frac { \pi }{ 3 } \right) \right) } =\frac { \pi }{ 3 } \)
Ex 2.2 Class 12 MathsQuestion 17.
\(\tan ^{ -1 }{ \left( tan\frac { 3\pi }{ 4 } \right) } \)
Solution:
\(\tan ^{ -1 }{ \left( tan\frac { 3\pi }{ 4 } \right) } \)
= \(\tan ^{ -1 }{ \left( sin\frac { 3\pi }{ 4 } \right) } \)
= \(\tan ^{ -1 }{ tan\left( \pi -\frac { \pi }{ 4 } \right) } \)
Ex 2.2 Class 12 MathsQuestion 18.
\(tan\left( \sin ^{ -1 }{ \frac { 3 }{ 5 } +\cot ^{ -1 }{ \frac { 3 }{ 2 } } } \right) \)
Solution:
\(tan\left( \sin ^{ -1 }{ \frac { 3 }{ 5 } +\cot ^{ -1 }{ \frac { 3 }{ 2 } } } \right) \)
Let \(\sin ^{ -1 }{ \frac { 3 }{ 5 } = } \theta \)
sinθ = \(\\ \frac { 3 }{ 5 } \)
Ex 2.2 Class 12 MathsQuestion 19.
\(\cos ^{ -1 }{ \left( cos\frac { 7\pi }{ 6 } \right) } \) is equal to
(a) \(\frac { 7\pi }{ 6 } \)
(b) \(\frac { 5\pi }{ 6 } \)
(c) \(\frac { \pi }{ 5 } \)
(d) \(\frac { \pi }{ 6 } \)
Solution:
\(\cos ^{ -1 }{ \left( cos\frac { 7\pi }{ 6 } \right) } \)
= \(\cos ^{ -1 }{ cos\left( \pi +\frac { \pi }{ 6 } \right) } \)
Ex 2.2 Class 12 MathsQuestion 20.
\(sin\left[ \frac { \pi }{ 3 } -\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } \right] \) is equal to
(a) \(\\ \frac { 1 }{ 2 } \)
(b) \(\\ \frac { 1 }{ 3 } \)
(c) \(\\ \frac { 1 }{ 4 } \)
(d) 1
Solution:
\(sin\left[ \frac { \pi }{ 3 } -\sin ^{ -1 }{ \left( -\frac { 1 }{ 2 } \right) } \right] \)
Ex 2.2 Class 12 MathsQuestion 21.
\(\tan ^{ -1 }{ \sqrt { 3 } -\cot ^{ -1 }{ \left( -\sqrt { 3 } \right) } } \) is equal to
(a) π
(b) \(-\frac { \pi }{ 2 } \)
(c) 0
(d) 2√3
Solution:
\(\tan ^{ -1 }{ \sqrt { 3 } -\cot ^{ -1 }{ \left( -\sqrt { 3 } \right) } } \)
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions Hindi Medium Ex 2.2
Class 12 Maths NCERT Solutions
- Chapter 1 Relations and Functions
- Chapter 2 Inverse Trigonometric Functions
- Chapter 3 Matrices
- Chapter 4 Determinants
- Chapter 5 Continuity and Differentiability
- Chapter 6 Application of Derivatives
- Chapter 7 Integrals Ex 7.1
- Chapter 8 Application of Integrals
- Chapter 9 Differential Equations
- Chapter 10 Vector Algebra
- Chapter 11 Three Dimensional Geometry
- Chapter 12 Linear Programming
- Chapter 13 Probability Ex 13.1